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Contributions
We propose Actually Sparse Variational Gaussian Processes (AS-
VGP) that:

• Construct inter-domain inducing variables by projecting the 
GP onto a compactly supported B-spline basis

• Use banded-matrices to reduce per iteration computational 
complexity to linear in the number of inducing points

• Avoid ever having to instantiate a dense matrix reducing 
memory requirements to linear in the number of data points

How We Compare
In low-dimensions AS-VGP is both faster 

and more memory efficient than prior 
inter-domain inducing point 

approximations
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B-Spline Inducing Features

where     are B-spline basis functions

Motivation
• Sparse variational Gaussian processes (GPs) approximate the 

GP posterior with a variational distribution conditioned on a set 
of inducing points

• In practice however, for large datasets with low lengthscales
even sparse GPs can become computationally expensive, limited 
by the number of inducing variables one can use 

• Inter-domain inducing variables condition the approximate 
posterior on linear transformations of the true GP to construct 
efficient matrix structures

um = 〈f,φm〉H

Linear Scaling

Precomputation of            is independent 
of number of inducing points and 

optimization scales linearly 
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Low Lengthscales

Our locally supported basis functions are 
better at modelling fast varying processes 

than globally supported ones

Spatial Data

AS-VGP is well suited to modelling low-
dimensional problems with low lengthscales

https://github.com/HJakeCunningham/ASVGP 27th April 2023
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Algorithm Pre- Computational Storage

computation complexity

SGPR (Titsias, 2009) 7 O(NM2
+M3

) O(NM)

SVGP (Hensman et al, 2013) 7 O(NbM2
+M3
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VFF (Hensman et al, 2017) O(NM2
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VISH (Dutordoir et al, 2020) O(NM2
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AS-VGP (Ours) O(N) O(M(k+ 1)
2
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Sparse Linear Algebra
By projecting onto a B-spline basis
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1) One-time sparse matrix product
2) Band-diagonal Cholesky of
3) Band-diagonal Cholesky of
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