
Reparameterized Multi-Resolution Convolutions for Long
Sequence Modelling
Harry Jake Cunningham1, Giorgio Giannone2, Mingtian Zhang1 and Marc Peter Deisenroth1

1University College London; 2 Amazon; ∗ Work completed whilst at UCL

Introduction
• Global convolutions have shown increasing promise as efficient

general-purpose sequence models.
• However, training long convolutions is hard, and kernel parameter-

izations must learn long-range dependencies without overfitting.
• This work introduces reparameterized multi-resolution convolu-

tions (MRConv), which uses structural reparameterization to com-
bine a set of low-rank sub-kernels of increasing length.

MRConv: Reparameterized Multi-Resolution
Convolutions

+

Causal Structural Reparameterization
We can merge multiple causal convolutions into one as

y[t] =
N−1∑
n=0

(u ∗ kn)[t] =

u ∗

N−1∑
n=0

kn

 [t] = (u ∗ krep)[t], (1)

where kn is the convolution kernel of the nth branch

Causal Branch Addition with BatchNorm When merging kernels
of different lengths, normalization becomes crucial due to the impact
of kernel size on the output statistics,

krep = BN0(k0) + BN1(k1), (2)

Causal Branch Addition with Linear Rescaling When merging
kernels of the same length, we use linear scaling allowing kernels to
be reparameterized during training,

krep = β0 · k0 + β1 · k1. (3)

Multi-Resolution Convolutions
At each resolution i, we define a kernel ki of length li = l02

i. We define
the set of normalized multi-resolution convolutions c̃ ∈ RN×D×L as,

c̃ = [BN0(k0 ∗ u),BN1(k1 ∗ u), · · · ,BNN−1(kN−1 ∗ u)] . (4)

The output y[t] ∈ RD at time step t is generated by computing a linear
combination of the coefficients c̃[t] at time step t according to

y[t] = αT c̃[t], (5)

where α ∈ RN×D is a learnable parameter. Applying α across the se-
quence length we define the output y ∈ RD×L as the summation

y = α0BN0(k0∗u)+α1BN1(k1∗u)+· · ·+αN−1BNN−1(kN−1∗u). (6)

Applying causal structural reparameterization at inference, we can
rewrite the above process as a single convolution,

y = u ∗ (α0BN0(k0) +α1BN1(k1) + · · ·+αN−1BN0(kN−1)) = u ∗ krep,
(7)

eliminating the extra memory and computational cost of training with
extra convolutions.

Low-Rank Kernel Parameterization

Dilated Kernels Variation on standard convolutional filters where p
many zeros are padded between the elements of the kernel,

y[t] = (u ∗ kdilated)[t] =
l−1∑
τ=0

k[τ ]u[t− pτ ]. (8)

Fourier Kernels Complex kernels k̂ ∈ CD×L parameterized in the
Fourier domain as a small number m of low-frequency Fourier modes,

kfourier[t] = IFFT[ZeroPad(k̂, L−m)])[t]. (9)

Sparse Kernels We randomly sample kernel positions across the se-
quence length, where δt ∈ T is the Kronecker delta as,

ksparse[t] = δt∈T · kt, (10)

Experiments

Long Range Arena. MRConv is competitive with other sub-quadratic
complexity models, including SSMs and linear-time transformers.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg.
(Input length) (2,048) (4,096) (4,000) (1,024) (1,024) (16,384)

Transformer 36.37 64.27 57.46 42.44 71.40 ✗ 53.66

Linear-Time Transformers:
MEGA-Chunk 58.76 90.19 90.97 85.80 94.41 93.81 85.66

State Space Models:
S4D-LegS 60.47 86.18 89.46 88.19 93.06 91.95 84.89
S4-LegS 59.60 86.82 90.90 88.65 94.20 96.35 86.09
Liquid-S4 62.75 89.02 91.20 89.50 94.8 96.66 87.32
S5 62.15 89.31 91.40 88.00 95.33 98.58 87.46

Convolutional Models:
CCNN 43.60 84.08 - 88.90 91.51 ✗ -
Long Conv 62.2 89.6 91.3 87.0 93.2 96.0 86.6
SGConv 61.45 89.20 91.11 87.97 95.46 97.83 87.17

MRConv 62.40 89.26 91.44 90.37 95.55 97.82 87.81

ImageNet Classification. Using optimized CUDA kernels for 1D
FFT convolutions, we close the gap between theoretical and empirical
throughput.

400 600 800 1000 1200

Throughput (Image/s)

81.5

82.0

82.5

83.0

83.5

84.0

T
op
-1
A
cc

ConvNeXt

MRConvNeXt - Cuda

MRConvNeXt - PyTorch

Swin


